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Abstract

We present a paradigm for the automatic assessment of pronunciation quality by machine. In this scoring paradigm,
both native and nonnative speech data is collected and a database of human-expert ratings is created to enable the
development of a variety of machine scores. We first discuss issues related to the design of speech databases and
the reliability of human ratings. We then address pronunciation evaluation as a prediction problem, trying to predict
the grade a human expert would assign to a particular skill. Using the speech and the expert-ratings databases, we build
statistical models and introduce different machine scores that can be used as predictor variables. We validate these
machine scores on the Voice Interactive Language Training System (VILTS) corpus, evaluating the pronunciation of
American speakers speaking French and we show that certain machine scores, like the log-posterior and the normalized
duration, achieve a correlation with the targeted human grades that is comparable to the human-to-human correlation
when a sufficient amount of speech data is available. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Computer-aided language instruction has been
evolving from simple systems with exercises based
on text and static pictures to more advanced sys-
tems that accept user input text or pointing and
may also involve speech output. More recently, the
possibility of accepting speech input began to be-
come practical. The addition of speech input al-
lows developers to complement reading and
listening comprehension (receptive skills) with the
more active processes of production and conver-
sation. In these systems, the computer provides
feedback of the kind that an instructor would
produce, such as an assessment of the quality of
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pronunciation or pointing to specific production
problems or mistakes.

Speech recognition technology is key to the
automatic evaluation of pronunciation quality.
However, standard speech recognition algorithms
were not designed with the goal of speech quality
assessment; therefore, new methods and algo-
rithms must be devised to match the perceptual
capabilities of human listeners to grade speech
quality.

Initial work at SRI International (Bernstein
et al., 1990; Bernstein, 1992; Digalakis, 1992) used
speech recognition technology to score the pro-
nunciation of Japanese students speaking English
over the telephone, based on fixed text prompts.
Knowledge of the text can be used to compute
robust pronunciation scoring algorithms, but this
approach limits generalizability, since new lessons
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require additional data collection. We refer to this
class of algorithms as text-dependent, because they
rely on statistics related to specific words, phrases
or sentences. Measures related to the likelihood of
segmental spectral features and duration were
found to correlate very well with human ratings.

More recently, in the Voice Interactive Lan-
guage Training System (VILTS) project (Rypa,
1996; Neumeyer et al., 1996; Franco et al., 1997),
researchers at SRI incorporated spoken language
technology in a system geared toward training
foreign-language students. The first version of the
system was designed to teach French to students
whose first language is American English. The
system elicited speech through various language
instruction activities designed to ensure that the
recognizer produced a correct transcription of the
recordings 99% of the time. This transcription, and
its corresponding phonetic segmentation, were
used by the system to produce pronunciation
scores that correlated well with those of expert
human listeners. To ensure that the VILTS soft-
ware was extensible and flexible and that language
instructors would be able to modify and design
lessons without expert knowledge in speech rec-
ognition technology, the original text-dependent
scoring algorithms were extended and generalized
and new algorithms were devised so that text-
independent pronunciation scoring was possible
(Neumeyer et al., 1996; Franco et al., 1997).

A significant part in the overall design work of a
system that evaluates the pronunciation quality of
foreign-language students should be devoted to the
interface and the selection of text material, so that
the overall interaction is adapted to the student
level (Bernstein, 1992; Rypa, 1996; Neumeyer et al.,
1996). In this paper, however, we focus on the
main algorithmic issues of the automatic evalua-
tion of pronunciation. In Section 2 we present the
standard pronunciation scoring paradigm that has
been used in (Bernstein et al., 1990; Digalakis,
1992; Neumeyer et al., 1996; Franco et al., 1997);
in this paradigm, the grades of expert human rat-
ers are used to calibrate the machine scores. The
collection and validation of human scores is dis-
cussed in Section 3. The machine scores used for
the automatic evaluation of pronunciation are
presented in Section 4 and are evaluated in Section

5 on the VILTS task. Our conclusions are given in
Section 6.

2. Pronunciation scoring paradigm

In previous work on the automatic evaluation
of pronunciation (Bernstein et al., 1990; Digalakis,
1992; Neumeyer et al., 1996; Franco et al., 1997), a
common framework has been adopted in which
read or spontaneous speech is first elicited from
the student, according to the student’s fluency in
the foreign language. In the second stage, the
student’s pronunciation is compared to the pro-
nunciation of native speakers, using native-
speaker data collected for this purpose. A machine
score is assigned in the third and final stage, to
predict the grade that expert human listeners
would assign to the student for the specific skill
that is being examined.

The pronunciation scoring paradigm developed
in (Bernstein et al., 1990; Digalakis, 1992; Neu-
meyer et al., 1996; Franco et al., 1997) uses hidden
Markov models (HMMs) (Digalakis et al., 1996)
to recover the text read by the student and to
generate phonetic segmentations of the student’s
speech, identifying the start and end times of the
different phones spoken in a sentence by the stu-
dent. With these segmentations, spectral match
and prosodic scores can be derived by comparing
the student’s speech to the speech of native
speakers. The generation and calibration of ma-
chine scores follows three main steps:

1. Generation of a phonetic segmentation, using an
HMM-based speech recognizer. The recognizer
models can be trained on data from both native
speakers and nonnative students of the foreign
language.

2. Creation of machine pronunciation scores for the
different phonetic segments by comparing the
speech of the student to that of native speakers.

3. Calibration of the scores, which includes tuning
the machine scores and possibly combining sev-
eral of them. The goal is to develop scores that
match as closely as possible the judgment of ex-
pert human listeners. To achieve this, it is nec-
essary to collect training data that include
pronunciation ratings by expert human raters.
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The first two steps can be integrated, as proposed
in (Ronen et al., 1997). There, the recognition step
is performed using a network that models mis-
pronunciation, and machine scores are assigned
based on the path that is followed in the network.
In this paper, however, we focus on machine
scores developed using the procedure that we
outlined above.

Several resources are required to evaluate the
pronunciation with the procedure described here.
These resources typically include a corpus of na-
tive speech data, a corpus of nonnative speech data
and a corpus of human ratings for the pronunci-
ation skills that the system will be asked to eval-
uate.

2.1. Native speech corpus

The native speech data are used to train the
speech recognizer that generates the phonetic
alignments of the student’s speech, and to provide
a reference for pronunciation quality. Therefore,
the population characteristics of native speech
data must match as closely as possible the char-
acteristics of the nonnative-student target popu-
lation. This minimizes noise in the phonetic
alignments and in the pronunciation scoring due
to speaker mismatch. In (Bernstein, 1992), where
the target population consisted of Japanese stu-
dents speaking over the telephone, the native cor-
pus consisted of American and British students
whose age was estimated to correspond to the age
of the targeted Japanese students.

The text material of the native corpus depends
on the mode of operation of the pronunciation-
evaluation system (text-dependent or independent).
In (Bernstein, 1992), where lessons with fixed-text
prompts were used, the native students recorded
the text on which the Japanese students were going
to be evaluated. In the VILTS project (Neumeyer
et al., 1996), however, where the flexibility of text-
independent pronunciation evaluation was desired,
the text and the recording procedure of the native
corpus were designed so that the native corpus
would be useful for different skill levels of the
nonnative students and would facilitate the cre-
ation of new lessons with new text. Hence, the na-
tive speakers were recorded in four modes:

e Read speech, common sentences, designed to in-
clude most common pronunciation problems for
nonnative students.

e Read speech, newspaper sentences, which were
not read within the native speaker corpus by
more than one speaker, so that many different
words would be collected.

e Spontaneous conversations between a subject
and an interviewer, that could be used at higher
skill levels.

e Read speech versions of the conversation tran-
scripts by the same speakers.

2.2. Nonnative speech corpus

The nonnative speech corpus can be used in
many ways. Part of the nonnative speech data
may be combined with the native speech data and
used to train the recognizer that will align the
student’s speech. This approach makes the rec-
ognizer more robust to common pronunciation
mistakes made by nonnative students. A second
part of the nonnative corpus may be used for
development and calibration of machine pronun-
ciation scores, whereas a third part is typically
used for evaluation and validation of scoring al-
gorithms.

The parts of the nonnative corpus that are used
for development and evaluation of machine scor-
ing are complemented by grades from human ex-
perts (teachers or native speakers) for the various
skills that are examined. The machine scoring
problem can then be defined as the prediction of
the grade that an expert human listener would
assign to the pronunciation skills. The develop-
ment part of the corpus with its corresponding
human grades can be used as training data to es-
timate the model parameters, that is, the predictors
used by the machine to estimate the human grade.
The wvalidity of these predictors is tested on the
evaluation part of the nonnative corpus.

For text-independent scoring, the nonnative
corpus design guidelines are similar to those of the
native corpus. As an example, the nonnative cor-
pus of the VILTS project consisted of
e Read speech, common sentences (same sentences

used in the native corpus).

e Read speech, newspaper sentences.
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e Read and imitated speech, in which the subject
listened to a native speaker reading the same
sentence before starting the recording.

2.3. Human ratings corpus

The human ratings corpus is created by pro-
viding multiple human judgments for various
pronunciation skills and for all the sentences in the
development and validation parts of the nonnative
speech corpus. The performance measure that has
been typically used for both the development and
validation phases is the correlation between the
machine scores and the corresponding human
ratings (Bernstein et al., 1990; Digalakis, 1992;
Neumeyer et al., 1996; Franco et al., 1997) and in
this paper we adopt the same performance mea-
sure. It is, however, important that the human
ratings, the reference against which the perfor-
mance of the scoring system is validated, are
consistent both within and across raters.

3. Human scoring

Human assessment of pronunciation is a highly
subjective task. The assessment of human grading
in the VILTS project was based on previous work
by Bernstein (1992) and Greenberg et al. (1992) for
the Autograder project. In Greenberg’s study,
Japanese students were asked to read sentences
over the telephone. Each utterance was later
graded on a 1-7 scale. A rating of 7 indicated
native-like pronunciation, and a rating of 1 indi-
cated that the utterance had a strong foreign ac-
cent and was difficult to understand. Twenty-nine
speakers of American English evaluated almost
60,000 utterances. Although more than one lis-

tener rated the same utterance, there was no
common set of utterances rated by all the raters.
Inter-rater reliability was computed on a subset of
the sentences rated by at least 10 listeners. The
average pair-wise inter-rater correlation was on
the order of » = 0.55.

In the VILTS study we made a few changes to
the experimental design in consultation with Steve
Greenberg. We decided to use a 1-5 scale instead
of 1-7, because the latter was more likely to in-
troduce inconsistencies in the ratings than to add
granularity to the results. To control the consis-
tency of the ratings, the judges were asked to rate
a subset of the materials (about 10% of the non-
native data) more than once. This control subset
was used to estimate the intra- and inter-rater
reliability systematically throughout the study.
We began by conducting a pilot study with 10
expert human listeners. Based on the results of the
pilot, we selected the five most consistent raters,
who were used to judge utterances from all 100
students. The measures used to evaluate consis-
tency within and across speakers were intra- and
inter-rater correlation, respectively, as explained
below.

In Table 1 we summarize the inter-rater corre-
lation on the control subset. We computed the
correlations at the sentence- and speaker-levels.
Sentence-level inter-rater correlation between two
raters A and B is computed by evaluating the
correlation coefficient between the grade given by
rater A and that of rater B for all utterances in the
common set. To compute the speaker-level inter-
rater correlation between two raters A and B, the
average score of each rater for all the utterances of
each speaker is first calculated. These speaker-level
scores of raters A and B are then used to calculate
the correlation coefficient.

Table 1

Sentence/speaker-level correlations between raters
Rater Id 1 2 3 4 5
1 1.00/1.00 0.61/0.84 0.68/0.75 0.67/0.79 0.70/0.85
2 1.00/1.00 0.60/0.79 0.55/0.74 0.60/0.82
3 1.00/1.00 0.66/0.75 0.70/0.82
4 1.00/1.00 0.72/0.86
5 1.00/1.00
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Sentence- and speaker-level correlations. Inter-rater correlations are computed against the average of the other raters. Intra-rater
correlations are computed using two ratings of the same utterance by the same rater

Rater Ids
Correlation type Level 1 2 3 4 5 Average
Inter-rater Sentence 0.78 0.67 0.77 0.76 0.80 0.76
Inter-rater Speaker 0.88 0.86 0.84 0.85 0.92 0.87
Intra-rater Sentence 0.82 0.73 0.86 0.71 0.75 0.76
Table 3 the way the machine scores will be correlated with
Histogram of scores across all sentence types and raters human scores. Hence. correlation between a rater
. b
Score 1 2 3 4 5 and a pool of other raters also suggests an upper
Percentage (%) 9 31 42 15 3 bound on the level of correlation between human

The level of correlation is reasonably uniform
among the pairs of raters. The correlations at the
speaker level are consistently higher than those at
the sentence level, reflecting that the average
scores based on several sentences are more reli-
able than the scores based on single sentences.
The average correlation between raters at the
sentence level is 0.65, while at the speaker level it
reaches 0.8. Based on previous studies, we believe
that this level of correlation is acceptable within
the limitations of the experimental design. We
also computed the correlation between a rater and
the mean of all other raters excluding the current
one, also referred to as open correlation. The open
correlation at the sentence level is computed by
evaluating the correlation coefficient between the
grade of a particular rater and the mean of the
grades of the remaining raters over all sentences
in the common set. The open correlation at the
speaker level is computed by first averaging each
of these two scores over all sentences coming
from the same speaker. Table 2 shows results for
the open correlation at the sentence-level and
speaker-level. This way of assessing the correla-
tion among raters at the speaker-level is similar to

and machine scores. Table 2 also shows the intra-
rater correlation, assessing the consistency of re-
peated judgments of the same material by the
same rater. In particular, each rater was asked to
rate the same utterance twice, on different days
and in different contexts. As we would expect,
comparing with Table 1, the intra-rater correla-
tion is higher than the average of pair-wise inter-
rater correlation (0.65), reaching an average of
0.76.

Descriptive statistics were obtained over the
whole set of almost 20,000 human scores of non-
native data from 100 speakers. The histogram of
the scores, using the 1-5 scale, from all raters for
all sentence types is shown in Table 3. We note a
smaller number of level-5 ratings, consistent with
the fact that these are ratings for nonnatives. The
maximum of the distribution is for the score 3 and
shows a significant asymmetry toward lower
scores. In Table 4, the mean and standard devia-
tion of the scores given by each rater are shown.
The means differ at most by a half point and the
standard deviations are reasonably similar.

Table 5 shows the average scores for each
sentence type in the VILTS corpus. The average
score correlates well with the level of difficulty of
the task (read sentences are more difficult than

Table 4

Means and standard deviations of scores from each rater
Rater Id 1 2 4 5 Average
Mean 2.5 2.7 3.0 2.5 3.0 2.7
Standard deviation 0.8 0.8 0.9 0.9 1.1 0.9
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Table 5

Means of scores for each sentence type
Sentence type Mean
Common sentences imitated 3.0
Newspaper sentences imitated 2.7
Common sentences read 2.8
Newspaper sentences read 2.5

imitated sentences and newspaper sentences more
difficult than common sentences).

4. Machine scoring

The machine scores must be reliable and must
correlate well with the human expert listener
scores. To achieve this, several issues must be
considered.

e The system must be protected from recognition
errors. If the degree of spectral and prosodic
match to the speech of native speakers is used
to create machine scores and there are errors
in the phonetic segmentations, then the stu-
dent’s voice will be compared to the incorrect
templates, thereby introducing significant noise
in the pronunciation scores. Hence, speech in
automatic language learning activities must be
elicited in a constrained way. The constraints
should depend on the student’s level, since the
recognizer’s performance is directly related to
the speaker’s fluency. Beginners may be prompt-
ed to read from specified text, as in (Bernstein,
1992; Digalakis, 1992); as the student’s level ad-
vances, multiple-choice questions may be used
(Rypa, 1996).

e Good machine scores must measure only the
student’s ability in the pronunciation of the lan-
guage’s phones and prosody and not the degree
of closeness between the student’s voice and the
native-speaker voices used as a reference. The
machine scores must, therefore, be normalized
against such factors as the degree of acoustic
match between the student and the reference na-
tive speakers (useful in spectral match scores),
and the rate with which the student speaks (use-
ful in prosodic scores).

e The amount of speech, upon which the evalua-
tion of the pronunciation is based, must be long
enough to ensure reliable scores.

In the remainder of this discussion, we assume that
the interaction between the student and the ma-
chine has been designed to allow error-free rec-
ognition of what the student has said. If we assume
that we know what the student is saying, as in the
case of read speech, we can obtain forced Viterbi
alignments using the model of the known sentence.
Hence, by using a speech recognizer we can obtain
a fairly reliable phonetic segmentation of the stu-
dent’s speech, which includes the labels and start
and end times of the phones present in the stu-
dent’s response to the prompting material. To
address reliability issues related to the length of
speech, we present scores that are obtained over
either a single utterance or a group of utterances (a
lesson) and provide a measure of the student’s
overall pronunciation quality. An overall assess-
ment of the pronunciation quality is something
that can be estimated reliably in that time frame.
Most of the scores can also be used to evaluate the
pronunciation of specific phones, albeit at a longer
time frame (Kim et al., 1997). The issue of speaker
normalization is, however, an inherent part of
the individual scores and will be addressed
separately in Sections 4.1-4.5, which describe five
categories of algorithms: HMM log-likelihood
scores, normalized acoustic scores, segment clas-
sification scores, segment duration scores, and
timing scores.

Machine scores can be classified as text-depen-
dent or text-independent. Text-dependent scoring
algorithms use information about the text to pro-
duce and calibrate the machine scores. When the
lessons that are used to evaluate the pronunciation
are fixed, as in (Bernstein, 1992; Digalakis, 1992),
then statistics of the specific words and phrases can
be used to normalize the machine scores, combine
the sentence-level scores into a single measure of
pronunciation quality, and so forth. However,
text-dependent scoring algorithms make the de-
velopment of new lessons cumbersome, because
additional data from native speakers and nonna-
tive students must be collected, since they are
needed to create and calibrate the machine scores.
Hence, we have recently focused on the harder
problem of creating text-independent pronuncia-
tion scores (Neumeyer et al., 1996; Franco et al.,
1997).
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4.1. HMM log-likelihood scores

In this approach, we compute, using the HMM,
the log-likelihoods of spectral observations ex-
tracted from short-time windows of speech
(frames) and use these log-likelihoods as scores.
The underlying assumption is that the logarithm of
the likelihood of the speech data, computed by the
Viterbi algorithm, is a good measure of the simi-
larity between native speech and nonnative speech
when the HMMs are trained using native speech
data. For each sentence, the phone segmentation is
obtained, along with the corresponding log-likeli-
hood of each segment. Let 7; denote the start time
of the ith phonetic segment. The total log-likeli-
hood of this segment can be computed, using an
HMM, by

Tip1—1

li= Z log(p(s:|s:—1)p(xise)), (1)

=1

where x,, s, denote the observed spectral vector and
the HMM state at time ¢, respectively, p(s|s;—1) is
the HMM transition probability and p(x|s,) is the
so-called output distribution of state s,. Since this
log-likelihood depends on the length of the sen-
tence, we must normalize for the effect of the
sentence length. In (Digalakis, 1992) two methods
were proposed for this. The first, the “global av-
erage log-likelihood” score G, is defined as

N
Zi:l l;

N )
Zi:l d;

where the summations are over all N segments in
an utterance and d; = 7, — 7; is the duration in
frames of the ith phonetic segment. The degree of
match during longer phones tends to dominate the
global log-likelihood score. Although shorter
phones may have an important perceptual effect,
as their duration is smaller, the degree of mismatch
along them may be swamped by that of longer
phones. To attempt to compensate for this effect,
the following ‘““local average log-likelihood™ score
L can be used:

G=

(2)

L-Ly 3)
N &4’

i=1

where the variables are defined as above. In this
score, the degree of match for each phone is
weighted equally regardless of its length.

The log-likelihood scores can be used for both
text-dependent and text-independent scoring.
However, there is no normalization against
speaker variability and, as we will see in Section 5,
these scores exhibit low correlation to human ex-
pert ratings.

4.2. Normalized acoustic scores

The correlation between the acoustic log-likeli-
hood scores presented in Section 4.1 and the hu-
man expert ratings can be improved if the former
are normalized using some estimate of the degree
of match between the spectral characteristics of the
student speaker and the training native speakers.
This normalization can be achieved by using the
scores of a set of context-independent phonetic
models.

One approach is to use a phone-normalized
score L (Digalakis, 1992), where the log-likelihood
of each phonetic segment is normalized by the log-
likelihood of the context-independent phone
model that better matches the observations within
that segment,

S iy
L:—Ej’ d 4
N d “)

where L; = max, /;(g) is the maximum log-likeli-
hood score over all context-independent phones g.

The phone-normalized score may require addi-
tional computation and introduces some inhomo-
geneity when the segment log-likelihoods are
computed using context-dependent phonetic
models. In addition, it has a somewhat ad-hoc
nature. A more elegant normalization method is to
compute the average posterior probability for each
phone (Franco et al., 1997). The motivation be-
hind using posterior scores is that the better a
student has pronounced a certain phonetic seg-
ment, the more likely this phone will be over the
remaining phones when the likelihoods are being
computed using native-speaker models. Posterior
scores are normalized using the average, rather
than the maximum, log-likelihood of each frame.
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Specifically, for each frame of the ith segment that

corresponds to the phone ¢;, we compute the

frame-based posterior probability p(g;|x,) of the

phone g; given the observation vector
P(xlg:)p(4:)

P =S lap(a) G)

where p(x/|q) is the probability density of the
current observation, using the model correspond-
ing to phone ¢. The summation in the denomina-
tor is over all context-independent phones
g=1,...,M and p(q) represents the prior proba-
bility of phone g.

Similar to the local log-likelihood score, the
logarithm of the frame-based posterior probability
can be accumulated over all the frames of the ith
segment,

Tiy1—1

pr= log(p(gil))- (6)

t=1;

The posterior-based score for a whole sentence P is
defined as the average of the individual posterior
scores over the N phone segments in a sentence,
normalized by their durations,

1 Pi
PfN;E. (7)

Both the phone-normalized and the posterior-
based scores should be less affected by changes in
the spectral match due to particular speaker
characteristics or acoustic channel variations. The
same changes in acoustic match would similarly
affect both the numerator and denominator in (7),
making the score more invariant to those changes
and more focused on pronunciation quality.

4.3. Segment classification scores

Pronunciation can be accessed by using a
measure based on recognition error; if the recog-
nizer is trained with native speakers, then the more
the pronunciation of the test speaker resembles
that of the training population, the higher the
recognition accuracy should be. One approach is
to use the word error rate, that is, the percentage
of the words that are either misclassified, deleted

or inserted by a word recognizer. If automatic and
easy development of new lessons is desired, how-
ever, the word recognizer must have a large vo-
cabulary and a very general language model. With
today’s state-of-the-art speech recognizers (Digal-
akis et al., 1996), it is not feasible to achieve good
performance for nonnative speakers, especially
without adaptation (Digalakis et al., 1995). Our
solution to this problem is to use a phone recog-
nizer, with a grammar at the phonetic level. If the
phone recognizer is trained with native speakers,
then the phone recognition accuracy can be used
as a pronunciation score.

4.4. Segment duration scores

For psychological and linguistic reasons, rela-
tive phone duration should correlate well with the
human expert listener’s scores. The cognitive load
of thinking about how to articulate can disrupt the
speech flow and increase disfluency. Cross-lan-
guage differences between the native language and
the language being learned can also affect dura-
tions of segments. Differences in letter-to-sound
rules for the orthographies of two languages may
lead to insertions, deletions or substitutions of
phones that will result in duration differences.

Duration scores can be obtained by measuring,
from the Viterbi phonetic alignment, the duration
in frames for the ith segment; then, its value must
be normalized to compensate for the rate of speech
(ROS) of the particular speaker. The correspond-
ing segment duration score can be obtained by
computing the log-probability of the normalized
segment duration, using a discrete distribution of
durations for the corresponding phone. These
discrete duration distributions can be trained from
alignments generated for the native training data.
Hence, the segment duration score can be defined
as

D= > log(plf(d)]an). Q

where f'(d;) is the duration normalization function
and ¢; is the phone that corresponds to the ith
segment.
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In text-dependent methods, one can normalize
the duration of the ith segment by the duration d,,,
of the word w; in which it appears, f(d;) = d;/d,,,
(Digalakis, 1992). Since each word will have ap-
peared many times in the native training data,
discrete distributions for the word-normalized
duration of the different phones can be estimated.
However, to achieve text independence, we cannot
use sentence, phrase or word durations to nor-
malize phone durations. We use a measure of ROS
as the normalization factor (Neumeyer et al.,
1996). The simplest approach to ROS is to com-
pute the global ROS as the average number of
phones per unit of time for a given speaker. Nor-
malized duration can be computed as

f(d) = d - ROS,, 9)

where ROS; is the estimated ROS for speaker s.
To compensate for phone alignment errors near
silence, we can exclude phones in the context of
silence from the training and testing data sets.

4.5. Timing scores

Insofar as nonnative speakers tend to speak
more slowly than natives, speaking rate should be
a good predictor of fluency and can be used as a
pronunciation score. Other aspects of linguistic
timing can also be exploited since language learn-
ers tend to impose the rhythm of their native
language on the language they are learning. For
example, English tends to be stress-timed (stressed
syllables tend to be lengthened and others short-
ened), while Spanish and French tend to be sylla-
ble-timed. In our investigations a distribution of
normalized syllabic periods is computed between
the centers of vowels within segments of speech.
The normalized time between syllables is used to
produce a syllabic timing score.

5. Experiments

We experimented with the VILTS corpus for
the various machine scores presented in Section 4.
First, a native French recognizer was trained by
SRI’s Decipher™ speech recognition system (Di-
galakis et al., 1996); the training involved 16,000

utterances from 100 native speakers of Parisian
French reading newspaper text. To compute native
statistics for the pronunciation algorithms and to
evaluate the correlation between human and ma-
chine scores, we generated phonetic time align-
ments for all the native and nonnative data by
using the Viterbi algorithm with the native French
models.

The pronunciation scoring algorithms were
evaluated using a test set with an average of 30
sentences per speaker from 100 adult American
speakers with various levels of proficiency in
French. The recordings were verified by the human
expert listeners at the same time that they rated the
pronunciations. Listeners were instructed to reject
utterances in which the audio was contaminated
during the recording and those in which the stu-
dent was seriously disfluent, stumbled or had other
significant disruptions.

Based on previous experimentation (Neumeyer
et al., 1996), when obtaining the different machine
scores for each sentence, in all the experiments we
removed the scores of the phones in context with
silence because their alignments might be inaccu-
rate. Doing so produced a small but consistent
increase in the correlation for all machine score
types. To evaluate the different types of scores at
the speaker level, about 30 sentence scores were
averaged for each of the 100 speakers before the
correlation was computed.

In Table 6 we show the correlations between the
different machine and human scores computed at
the sentence level (across 3000 sentences) and
speaker level (across 100 speakers). Both global

Table 6

Sentence- and speaker-level correlations between human and
different machine scores using 100 nonnative speakers and 30
utterances per speaker

Correlation coefficient

Machine score Sentence Speaker
level level
Global log likelihood G 0.182 0.313
Local log likelihood L 0.285 0.481
Log posterior score P 0.521 0.842
Phone recognition accuracy 0.399 0.469
Segment duration score D 0.410 0.856
Syllabic timing 0.355 0.726
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and local HMM likelihoods are poor predictors of
pronunciation ratings. Local HMM likelihoods
have slightly better correlation with human scores
than the global HMM likelihood, which agrees
with the perceptual argument given in Section 4.1.

Phone classification has a performance similar
to that of the local log likelihood at the speaker
level but seems to correlate better at the sentence
level. The posterior-based score has the highest
correlation at the sentence level, followed by the
duration score, having a 20% lower correlation.
At the speaker level the normalized duration and
the log-posterior scores are comparable, having
the highest correlations of all the machine scores
evaluated and rendering a performance similar to
that of the human raters, as we showed in
Section 3.

Finally, the timing scores result in acceptable
speaker-level correlations. Global ROS is a good
predictor of pronunciation rating, confirming that
advanced students speak faster than beginners.
However, this score by itself would be a poor in-
dicator of overall pronunciation given that any
speech-like signal of the right duration could result
in high machine scores. Syllabic timing, however,
should be robust to ROS because the durations are
normalized and affected only by the relative du-
ration of the timing between syllables.

While at the speaker level the best machine
scores reach a correlation level comparable to that
of humans, the sentence-level correlations are still
lower than those among humans, suggesting that
further work is needed to predict pronunciation
ratings when using only a single utterance. Using a
slightly different development set, we calculated
the speaker-level correlation between human and
machine scores by using various amounts of test
data. The human scores were the speaker-averaged
scores of the 100 speakers, using the complete set
of 50 sentences, in all cases. In this way we always
correlated the machine scores with our best esti-
mate of the speaker-level human score. To obtain
the speaker-averaged machine score for variable
amounts of data, we varied the number of sen-
tences per speaker (N) from 1 to 50. For each value
of N, a random subset of N sentences was chosen
from the 50 speaker sentences. The speaker-aver-
aged machine score was created by averaging the

0.9 T

0.8

o
3

Correlation coefficient
o
=
T
L

* (Posterior)
0.4

+ (Norm dur)

o (Likelihood)

0.3 . T
10 10 10
Number of sentences per speaker N (Log scale)

Fig. 1. Speaker level correlation for posterior, duration and
likelihood scores for different numbers of sentences per speaker.

N sentence machine scores. This random experi-
ment was repeated 40 times and the calculated
correlation values for each N were averaged.

Clearly, correlations improve as the amount of
test data increases. As we can see in Fig. 1 the
posterior probability and the duration scores per-
form similarly for large amounts of data. As we
use fewer sentences per speaker, the posterior score
outperforms the duration score, particularly for
low values of N, that is, three sentences are enough
to obtain a correlation of approximately 0.8.

6. Summary and discussion

We have extensively used a pronunciation
scoring paradigm for the automatic assessment of
pronunciation quality by machine. In this scoring
paradigm, both native and nonnative speech data
are collected and a database of human-expert
ratings is created to enable the development of a
variety of machine scores.

The speech database design is very important,
especially for text-independent pronunciation
evaluation. Similarly, the reliability of the human
ratings is critical, since we see pronunciation
evaluation as a prediction problem, where we are
trying to predict the grade a human expert would
assign to a particular skill by using statistical
models constructed with the speech and the expert-
ratings databases.
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These statistical models predict the human-ex-
pert grade by using machine scores, or predictor
variables. To be useful for our purpose, these
machine scores must satisfy various properties,
and we have experimented with several of the
machine scores.

The validity of the machine scores was tested on
the VILTS corpus to evaluate the pronunciation of
American speakers speaking French. We found
that certain machine scores, such as the log-pos-
terior and the normalized duration, achieve a
correlation with the targeted human grades that is
comparable to human-to-human correlation when
a sufficient amount of speech data is available,
typically a few sentences. The correlation of these
machine scores with the human grades still lags the
human-to-human correlation for very short
amounts of speech.

The models that we used in this paper were all
single-predictor models, that is, we did not try to
use simultaneously different machine scores as
multiple predictor variables. In the Autograder
project (Digalakis, 1992) we have found that the
combination of the various machine scores can
improve machine-to-human correlation signifi-
cantly and we will address this issue in a forth-
coming paper.
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